Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an in vitro blood-brain barrier model

人类癫痫内皮细胞中糖皮质激素受体的调节对体外血脑屏障模型中药物生物转化的影响

阅读:5
作者:Chaitali Ghosh, Mohammed Hossain, Saurabh Mishra, Sameena Khan, Jorge Gonzalez-Martinez, Nicola Marchi, Damir Janigro, William Bingaman, Imad Najm

Methods

Surgically resected brain specimens from patients with drug-resistant epilepsy, primary EPI-ECs, and control human brain microvascular endothelial cells (HBMECs) were used. Expression of GR, pregnane X receptor, CYP3A4, and MDR1 was analyzed pre- and post-GR silencing in EPI-ECs. Endothelial cells were co-cultured with astrocytes and seeded in an in vitro flow-based BBB model (DIV-BBB). Alternatively, the GR inhibitor mifepristone was added to the EPI-EC DIV-BBB. Integrity of the BBB was monitored by measuring transendothelial electrical resistance. Cell viability was assessed by glucose-lactate levels. Permeability of [3 H]sucrose and [14 C]phenytoin was quantified. CYP function was determined by measuring resorufin formation and oxcarbazepine (OXC) metabolism.

Objective

Nuclear receptors and cytochrome P450 (CYP) regulate hepatic metabolism of several drugs. Nuclear receptors are expressed at the neurovascular unit of patients with drug-resistant epilepsy. We studied whether glucocorticoid receptor (GR) silencing or inhibition in human epileptic brain endothelial cells (EPI-ECs) functionally impacts drug bioavailability across an in vitro model of the blood-brain barrier (BBB) by CYP-multidrug transporter (multidrug resistance protein 1, MDR1) mechanisms.

Results

Silencing and inhibition of GR in EPI-ECs resulted in decreased pregnane X receptor, CYP3A4, and MDR1 expression. GR silencing or inhibition did not affect BBB properties in vitro, as transendothelial electrical resistance and Psucrose were unaltered, and glucose metabolism was maintained. GR EPI-EC silencing or inhibition led to (1) increased Pphenytoin BBB permeability as compared to control; (2) decreased CYP function, indirectly evaluated by resorufin formation; (3) improved OXC bioavailability with increased abluminal (brain-side) OXC levels as compared to control. Significance: Our results suggest that modulating GR expression in EPI-ECs at the BBB modifies drug metabolism and penetration by a mechanism encompassing P450 and efflux transporters. The latter could be exploited for future drug design and to overcome pharmacoresistance.

Significance

Our results suggest that modulating GR expression in EPI-ECs at the BBB modifies drug metabolism and penetration by a mechanism encompassing P450 and efflux transporters. The latter could be exploited for future drug design and to overcome pharmacoresistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。