Apoptotic Extracellular Vesicles from Supernumerary Tooth-Derived Pulp Stem Cells Transfer COL1A1 to Promote Angiogenesis via PI3K/Akt/VEGF Pathway

来自多生牙髓干细胞的凋亡细胞外囊泡转移 COL1A1 通过 PI3K/Akt/VEGF 通路促进血管生成

阅读:5
作者:Yue Fei, Zhichen Ling, Qian Tong, Jun Wang

Conclusion

SNTSC-ApoEVs can promote angiogenesis by transferring the functional molecule COL1A1 and activating the PI3K/Akt/VEGF pathway, making SNTSC-ApoEVs a promising strategy for the treatment of angiogenesis-related diseases.

Methods

SNTSC-ApoEVs were isolated and characterized. In vitro effects of SNTSC-ApoEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) were evaluated by CCK-8, wound healing, transwell, and tube formation assays. The mRNA and protein levels of proangiogenic genes were quantified by qRT-PCR, Western blot, and immunofluorescence analysis. A Matrigel plug model was established in 6-week-old male nu/nu mice for one week, and the in vivo impact of SNTSC-ApoEVs on micro-vessel formation was assessed by histological analysis. Proteomic analysis and RNA sequencing were performed to explore the active ingredients and underlying mechanisms.

Purpose

Angiogenesis is a tightly controlled process that initiates the formation of new vessels and its dysfunction can lead to life-threatening diseases. Apoptotic extracellular vesicles (ApoEVs) have emerged as a proangiogenic agent with high safety and isolation efficiency profile, and ApoEVs from supernumerary tooth-derived pulp stem cells (SNTSC-ApoEVs) have their unique advantages with an easily accessible parental cell source and non-invasive cell harvesting. However, the detailed characteristics of SNTSC-ApoEVs are largely unknown. This study aimed to investigate the proangiogenic capacity and function molecule of SNTSC-ApoEVs.

Results

SNTSC-ApoEVs enhanced the proliferation, migration, and angiogenesis of HUVECs in vitro. In the Matrigel plug model in vivo, SNTSC-ApoEVs promoted CD31-positive luminal structure formation. Apart from expressing general ApoEV markers, SNTSC-ApoEVs were enriched with multiple proteins related to extracellular matrix-cell interactions. Mechanistically, SNTSC-ApoEVs transferred COL1A1 to HUVECs and promoted endothelial functions by activating the PI3K/Akt/VEGF cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。