Maternal Dietary Supplementation with γ-Aminobutyric Acid Alleviated Oxidative Stress in Gestating Sows and Their Offspring by Regulating GABRP

母猪日粮中添加 γ-氨基丁酸可通过调节 GABRP 缓解妊娠母猪及其后代的氧化应激

阅读:5
作者:Xiaoyi Liu, Lili Jiang, Jiaman Pang, Yujun Wu, Yu Pi, Jianjun Zang, Junjun Wang, Dandan Han

Abstract

Sows usually suffer oxidative stress during gestation, and this limits the growth of fetuses via placenta. Gamma-aminobutyric acid (GABA) is a functional nonessential amino acid engaged in regulating the physiological status of animals. However, the effects of GABA on the oxidative homeostasis of sows and their offspring remain unclear. Eighteen late gestating sows (85 d) were divided into the CON and GABA groups and fed the basal diet and the GABA diet (200 mg/kg GABA), respectively, until farrowing. At parturition, the sows’ litter characteristics, the plasma antioxidant parameters of sows, and their offspring were evaluated. The results showed that GABA supplementation had no marked effect on the reproductive performance of sows (p > 0.10) but had a trend of reducing the amount of intrauterine growth restriction (IUGR) in piglets (0.05 < p < 0.10). At the same time, the addition of GABA elevated the plasma superoxide dismutase (SOD) level of sows and enhanced the glutathione peroxidase (GSH-Px) activity of newborn piglets (p < 0.05). Based on the H2O2-induced oxidative stress in pTr-2 cells, GABA elevated intracellular GSH-Px, SOD, catalase (CAT), and total antioxidant capacity (T-AOC, p < 0.01) and upregulated the gene expressions of CAT, gamma-aminobutyric acid receptor (GABRP), and nuclear factor-erythroid 2-related factor-2 (Nrf2) in H2O2-treated pTr-2 cells (p < 0.05). Taken together, GABA improved the antioxidant capacity of sows and alleviated the placental oxidative stress by upregulating the GABRP and Nrf2 genes, which have the potential to promote oxidative homeostasis in newborn piglets.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。