The Binding Affinity of Small Molecules with Yam Tyrosinase (Catechol Oxidase): A Biophysical Study

小分子与山药酪氨酸酶(儿茶酚氧化酶)的结合亲和力:一项生物物理研究

阅读:7
作者:Tabassum Mulla, Sushama Patil, Srinivas Sistla, Jyoti Jadhav

Abstract

Yam tyrosinase has become an economically essential enzyme due to its ease of purification and abundant availability of yam tubers. However, an efficient biochemical and biophysical characterization of yam tyrosinase has not been reported. In the present study, the interaction of yam (Amorphophallus paeoniifolius) tyrosinase was studied with molecules such as crocin (Crocus sativus), hydroquinone, and kojic acid. Surface plasmon resonance (SPR), fluorescence spectroscopy, and circular dichroism techniques were employed to determine the binding affinities and the changes in secondary and tertiary structures of yam tyrosinase in the presence of four relevant small molecules. Hydroquinone and crocin exhibited very low binding affinities of 0.24 M and 0.0017 M. Due to their apparent weak interactions, competition experiments were used to determine more precisely the binding affinities. Structure-function interrelationships can be correlated in great detail by this study, and the results can be compared with other available tyrosinases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。