High-throughput evaluation of polymeric nanoparticles for tissue-targeted gene expression using barcoded plasmid DNA

使用条形码质粒 DNA 对聚合物纳米粒子进行组织靶向基因表达的高通量评估

阅读:6
作者:Jayoung Kim, Hannah J Vaughan, Camila G Zamboni, Joel C Sunshine, Jordan J Green

Abstract

Successful systemic gene delivery requires specific tissue targeting as well as efficient intracellular transfection. Increasingly, research laboratories are fabricating libraries of novel nanoparticles, engineering both new biomaterial structures and composition ratios of multicomponent systems. Yet, methods for screening gene delivery vehicles directly in vivo are often low-throughout, limiting the number of candidate nanoparticles that can be investigated. Here, we report a comprehensive, high-throughput method to evaluate a library of polymeric nanoparticles in vivo for tissue-specific gene delivery. The method involves pairing each nanoparticle formulation with a plasmid DNA (pDNA) that harbors a unique nucleotide sequence serving as the identifying "barcode". Using real time quantitative PCR (qPCR) for detection of the barcoded pDNA and quantitative reverse transcription PCR (RT-qPCR) for transcribed barcoded mRNA, we can quantify accumulation and transfection in tissues of interest. The barcode pDNA and primers were designed with sufficient sensitivity and specificity to evaluate multiple nanoparticle formulations per mouse, improving screening efficiency. Using this platform, we evaluated the biodistribution and transfection of 8 intravenously administered poly(beta-amino ester; PBAE) nanoparticle formulations, each with a PBAE polymer of differential structure. Significant levels of nanoparticle accumulation and gene transfection were observed mainly in organs involved in clearance, including spleen, liver, and kidneys. Interestingly, higher levels of transfection of select organs did not necessarily correlate with higher levels of tissue accumulation, highlighting the importance of directly measuring in vivo transfection efficiency as the key barcoded parameter in gene delivery vector optimization. To validate this method, nanoparticle formulations were used individually for luciferase pDNA delivery in vivo. The distribution of luciferase expression in tissues matched the transfection analysis by the barcode qPCR method, confirming that this platform can be used to accurately evaluate systemic gene delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。