New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins

来自水螅刺丝囊蛋白的新型无交联剂纳米纤维生物材料

阅读:5
作者:Theresa Bentele, Federico Amadei, Esther Kimmle, Mariam Veschgini, Philipp Linke, Mariana Sontag-González, Jutta Tennigkeit, Anthony D Ho, Suat Özbek, Motomu Tanaka

Abstract

Nematocysts, the stinging organelles of cnidarians, have remarkable mechanical properties. Hydra nematocyst capsules undergo volume changes of 50% during their explosive exocytosis and withstand osmotic pressures of beyond 100 bar. Recently, two novel protein components building up the nematocyst capsule wall in Hydra were identified. The cnidarian proline-rich protein 1 (CPP-1) characterized by a "rigid" polyproline motif and the elastic Cnidoin possessing a silk-like domain were shown to be part of the capsule structure via short cysteine-rich domains that spontaneously crosslink the proteins via disulfide bonds. In this study, recombinant Cnidoin and CPP-1 are expressed in E. coli and the elastic modulus of spontaneously crosslinked bulk proteins is compared with that of isolated nematocysts. For the fabrication of uniform protein nanofibers by electrospinning, the preparative conditions are systematically optimized. Both fibers remain stable even after rigorous washing and immersion into bulk water owing to the simultaneous crosslinking of cysteine-rich domains. This makes our nanofibers clearly different from other protein nanofibers that are not stable without chemical crosslinkers. Following the quantitative assessment of mechanical properties, the potential of Cnidoin and CPP-1 nanofibers is examined towards the maintenance of human mesenchymal stem cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。