Cellular Uptake and Transport Mechanism of 6-Mercaptopurine Nanomedicines for Enhanced Oral Bioavailability

6-巯基嘌呤纳米药物的细胞摄取和运输机制以提高口服生物利用度

阅读:8
作者:Yaru Zou, Wei Gao, Huizhen Jin, Chenmei Mao, Yi Zhang, Xiaoling Wang, Dong Mei, Libo Zhao

Background

Nanomedicines have significant advantages in enhancing the oral bioavailability of drugs, but a deeper understanding of the underlying mechanisms remains to be interpreted. Hence, the present study aims to explain the uptake and trafficking mechanism for 6-MP nanomedicines we previously constructed.

Conclusion

6-MPNs improve the oral bioavailability through multiple pathways, including active transport, paracellular transport, lymphatic delivery and MRP4 transporter. The findings of current study may shed light on the cellular uptake and transcellular trafficking mechanism of oral nanomedicines.

Methods

6-MP loaded poly(lactide-co-glycolide) (PLGA) nanomedicines (6-MPNs) were prepared by the multiple emulsion method. The transcytosis mechanism of 6-MPNs was investigated in Caco-2 cells, Caco-2 monolayers, follicle associated epithelium (FAE) monolayers and rats, including transmembrane pathway, intracellular trafficking, paracellular transport and the involvement of transporter.

Results

Pharmacokinetics in rats showed that the area under the curve (AUC) of 6-MP in the 6-MPNs group (147.3 ± 42.89 μg/L·h) was significantly higher than that in the 6-MP suspensions (6-MPCs) group (70.31 ± 18.24 μg/L·h). The uptake of 6-MPNs in Caco-2 cells was time-, concentration- and energy-dependent. The endocytosis of intact 6-MPNs was mediated mainly through caveolae/lipid raft, caveolin and micropinocytosis. The intracellular trafficking of 6-MPNs was affected by endoplasmic reticulum (ER)-Golgi complexes, late endosome-lysosome and microtubules. The multidrug resistance associated protein 4 (MRP4) transporter-mediated transport of free 6-MP played a vital role on the transmembrane of 6-MPNs. The trafficking of 6-MPNs from the apical (AP) side to the basolateral (BL) side in Caco-2 monolayers was obviously improved. Besides, 6-MPNs affected the distribution and expression of zona occludens-1 (ZO-1). The transport of 6-MPNs in FAE monolayers was concentration- and energy-dependent, while reaching saturation over time. 6-MPNs improved the absorption of the intestinal Peyer's patches (PPs) in rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。