Potent effects of dioscin against hepatocellular carcinoma through regulating TP53-induced glycolysis and apoptosis regulator (TIGAR)-mediated apoptosis, autophagy, and DNA damage

薯蓣皂苷通过调节 TP53 诱导的糖酵解和凋亡调节剂 (TIGAR) 介导的细胞凋亡、自噬和 DNA 损伤,对肝细胞癌具有强效作用

阅读:7
作者:Zhang Mao, Xu Han, Dahong Chen, Youwei Xu, Lina Xu, Lianhong Yin, Huijun Sun, Yan Qi, Lingling Fang, Kexin Liu, Jinyong Peng

Background and purpose

Dioscin shows potent effects against cancers. We aimed to elucidate its pharmacological effects and mechanisms of action on hepatocellular carcinoma (HCC) in vivo and in vitro. Experimental approach: Effects of dioscin were investigated in SMMC7721 and HepG2 cells, diethylnitrosamine-induced primary liver cancer in rats, and cell xenografts in nude mice. Isobaric tags for relative and absolution quantitation (iTRAQ)-based proteomics was used to find dioscin's targets and investigate its mechanism. Key

Purpose

Dioscin shows potent effects against cancers. We aimed to elucidate its pharmacological effects and mechanisms of action on hepatocellular carcinoma (HCC) in vivo and in vitro. Experimental approach: Effects of dioscin were investigated in SMMC7721 and HepG2 cells, diethylnitrosamine-induced primary liver cancer in rats, and cell xenografts in nude mice. Isobaric tags for relative and absolution quantitation (iTRAQ)-based proteomics was used to find dioscin's targets and investigate its mechanism. Key

Results

In SMMC7721 and HepG2 cells dioscin markedly inhibited cell proliferation and migration, induced apoptosis, autophagy, and DNA damage. It inhibited DEN-induced primary liver cancer in rats, markedly changed body weights and restored levels of α fetoprotein, alanine transaminase, aspartate transaminase, γ-glutamyltransferase, alkaline phosphatase, and Ki67. It also inhibited growth of xenografts in mice. In SMMC7721 cells, 191 differentially expressed proteins were found after dioscin, based on iTRAQ-based assay. TP53-inducible glycolysis and apoptosis regulator (TIGAR) was identified as being significantly down-regulated by dioscin. Dioscin induced cell apoptosis, autophagy, and DNA damage via increasing expression levels of p53, cleaved PARP, Bax, cleaved caspase-3/9, Beclin-1, and LC3 and suppressing those of Bcl-2, p-Akt, p-mammalian target of rapamycin (mTOR), CDK5, p-ataxia telangiectasia-mutated gene (ATM). The transfection of TIGAR siRNA into SMMC7721 cells and xenografts in nude mice further confirmed that the potent activity of dioscin against HCC is evoked by adjusting TIGAR-mediated inhibition of p53, Akt/mTOR, and CDK5/ATM pathways. Conclusions and implications: The data suggest that dioscin has potential as a therapeutic, and TIGAR as a drug target for treating HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。