Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice

树枝状聚合物包覆的氧化铁纳米粒子在 BALB/c 小鼠中的生物分布、药代动力学和毒性

阅读:10
作者:Marzieh Salimi, Saeed Sarkar, Samaneh Fathi, Ali Mohammad Alizadeh, Reza Saber, Fatemeh Moradi, Hamid Delavari

Background

The possibility of using a specific nanoparticle in nanomedicine highly depends on its biodistribution profile and biocompatibility. Due to growing demand for iron oxide nanoparticles (IONPs) and dendrimers in biomedical applications, this study was performed to assess the biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles (G4@IONPs). Materials and

Conclusion

Although more systematic studies are still required, our results encouraged the future investigations of G4@IONPs in biomedical applications.

Methods

IONPs were synthesized via co-precipitation and coated with the fourth generation (G4) of polyamidoamine (PAMAM) dendrimer. To determine the biodistribution, 5 mg/mL G4@IONPs suspension was intraperitoneally injected into tumor-bearing BALB/c mice, and iron levels in blood and various organs, including the lung, liver, brain, heart, tumor, and kidney, were measured by inductively coupled plasma mass spectrometry (ICP-MS) at 4, 8, 12, and 24 h after injection. Also, to investigate the toxicity of G4@IONPs, different concentrations of G4@IONPs were injected into BALB/c mice, and blood, renal, and hepatic factors were measured. Furthermore, histopathological staining was performed to investigate the effect of G4@IONPs on the liver and kidney tissues.

Results

The results showed that the iron content was higher in the kidney, liver, and lung tissues 24 h after injection. Toxicity assessments revealed a significant increase in blood urea nitrogen (BUN) and direct bilirubin at the concentration of 10 mg/kg. Also, in this concentration, histopathological abnormalities were detected in liver tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。