One-Pot Synthesis of Biochar from Industrial Alkali Lignin with Superior Pb(II) Immobilization Capability

一锅法合成具有优异 Pb(II) 固定能力的工业碱木质素生物炭

阅读:9
作者:Jiale Li, Taoze Liu, Zhanghong Wang

Abstract

This study synthesized biochar through a one-pot pyrolysis process using IALG as the raw material. The physicochemical properties of the resulting biochar (IALG-BC) were characterized and compared with those of biochar derived from acid-treated lignin with the ash component removed (A-IALG-BC). This study further investigated the adsorption performances and mechanisms of these two lignin-based biochars for Pb(II). The results revealed that the high ash content in IALG, primarily composed of Na, acts as an effective catalyst during pyrolysis, reducing the activation energy and promoting the development of the pore structure in the resulting biochar (IALG-BC). Moreover, after pyrolysis, Na-related minerals transformed into particulate matter sized between 80 and 150 nm, which served as active adsorption sites for the efficient immobilization of Pb(II). Adsorption results demonstrated that IALG-BC exhibited a significantly superior adsorption performance for Pb(II) compared to that of A-IALG-BC. The theoretical maximum adsorption capacity of IALG-BC for Pb(II), derived from the Langmuir model, was determined to be 809.09 mg/g, approximately 40 times that of A-IALG-BC. Additionally, the adsorption equilibrium for Pb(II) with IALG-BC was reached within approximately 0.5 h, whereas A-IALG-BC required more than 2 h. These findings demonstrate that the presence of inorganic mineral components in IALG plays a crucial role in its resource utilization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。