The Slit-binding Ig1 domain is required for multiple axon guidance activities of Drosophila Robo2

Slit 结合 Ig1 结构域是果蝇 Robo2 多种轴突引导活动所必需的

阅读:4
作者:LaFreda J Howard, Marie C Reichert, Timothy A Evans

Abstract

Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. Robo receptors signal midline repulsion in response to Slit ligands, which bind to the N-terminal Ig1 domain in most family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. While Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2's other activities are also Slit-dependent. To determine which of Robo2's axon guidance roles depend on its Slit-binding Ig1 domain, we used a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based strategy to replace the endogenous robo2 gene with a robo2 variant lacking the Ig1 domain (robo2∆Ig1). We compare the expression and localization of Robo2∆Ig1 protein with full-length Robo2 in embryonic neurons in vivo and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that the removal of the Ig1 domain from Robo2∆Ig1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2∆Ig1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。