High resolution metabolomics to discriminate compounds in serum of male lung cancer patients in South Korea

高分辨率代谢组学鉴别韩国男性肺癌患者血清中的化合物

阅读:13
作者:Aryo D Pamungkas, Changyoung Park, Sungyong Lee, Sun Ha Jee, Youngja H Park

Background

The cancer death rate escalated during 20th century. In South Korea, lung cancer is expected to contribute 12,736 deaths in men, the highest amount among all cancers. Several risk factors may increase the chance to acquiring lung cancer, with mostly related to exogenous compounds found in cigarette smoke and synthetic manufacturing materials. As the mortality rate of lung cancer increases, deeper understanding is necessary to explore risk factors that may lead to this malignancy. In this regard, this study aims to apply high resolution metabolomics (HRM) using LC-MS to detect significant compounds that might contribute in inducing lung cancer and find the correlation of these compounds to the subjects' smoking habit.

Conclusions

Two potential biomarkers, retinol and L-proline, were identified and these findings may create opportunities for the development of new lung cancer diagnostic tools.

Methods

The comparison was made between healthy control and lung cancer groups for metabolic differences. Further analyses to determine if these differences are related to tobacco-induced lung cancer (past-smoker control vs. past-smoker lung cancer patients (LCPs) and non-smoker control vs. current-smoker LCPs) were selected. The univariate analysis was performed, including a false discovery rate (FDR) of q = 0.05, to determine the significant metabolites between the analyses. Hierarchical clustering analysis (HCA) was done to discriminate metabolites between the control and case subjects. Selected compounds based on significant m/z features of human serum then experienced MS/MS examination, showing that for many m/z, the patterns of ion dissociation matched with standards. Then, the significant metabolites were identified using Metlin database and features were mapped on the human metabolic pathway mapping tool of the Kyoto Encyclopedia of Genes and Genomes (KEGG).

Results

Using metabolomics-wide association studies, metabolic changes were observed among control group and lung cancer patients. Bisphenol A (211.11, [M + H-H2O](+)), retinol (287.23, [M + H](+)) and L-proline (116.07, [M + H](+)) were among the significant compounds found to have contributed in the discrimination between these groups, suggesting that these compounds might be related in the development of lung cancer. Retinol has been seen to have a correlation with smoking while both bisphenol A and L-proline were found to be unrelated. Conclusions: Two potential biomarkers, retinol and L-proline, were identified and these findings may create opportunities for the development of new lung cancer diagnostic tools.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。