Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis

小胶质细胞 P2Y₆ 受体介导一氧化氮释放和星形胶质细胞凋亡

阅读:6
作者:Clara Quintas, Diana Pinho, Clara Pereira, Lucília Saraiva, Jorge Gonçalves, Glória Queiroz

Background

During cerebral inflammation uracil nucleotides leak to the extracellular medium and activate glial pyrimidine receptors contributing to the development of a reactive phenotype. Chronically activated microglia acquire an anti-inflammatory phenotype that favors neuronal differentiation, but the impact of these microglia on astrogliosis is unknown. We investigated the contribution of pyrimidine receptors to microglia-astrocyte signaling in a chronic model of inflammation and its impact on astrogliosis.

Conclusions

In LPS treated co-cultures of astrocytes and microglia, UTP is rapidly converted into UDP, which activates P2Y6 receptors inducing the release of NO by microglia that causes astrocyte apoptosis, thus controlling their rate of proliferation and preventing an excessive astrogliosis.

Methods

Co-cultures of astrocytes and microglia were chronically treated with lipopolysaccharide (LPS) and incubated with uracil nucleotides for 48 h. The effect of nucleotides was evaluated in methyl-[3H]-thymidine incorporation. Western blot and immunofluorescence was performed to detect the expression of P2Y6 receptors and the inducible form of nitric oxide synthase (iNOS). Nitric oxide (NO) release was quantified through Griess reaction. Cell death was also investigated by the LDH assay and by the TUNEL assay or Hoechst 33258 staining.

Results

UTP, UDP (0.001 to 1 mM) or PSB 0474 (0.01 to 10 μM) inhibited cell proliferation up to 43 ± 2% (n = 10, P <0.05), an effect prevented by the selective P2Y6 receptor antagonist MRS 2578 (1 μM). UTP was rapidly metabolized into UDP, which had a longer half-life. The inhibitory effect of UDP (1 mM) was abolished by phospholipase C (PLC), protein kinase C (PKC) and nitric oxide synthase (NOS) inhibitors. Both UDP (1 mM) and PSB 0474 (10 μM) increased NO release up to 199 ± 20% (n = 4, P <0.05), an effect dependent on P2Y6 receptors-PLC-PKC pathway activation, indicating that this pathway mediates NO release. Western blot and immunocytochemistry analysis indicated that P2Y6 receptors were expressed in the cultures being mainly localized in microglia. Moreover, the expression of iNOS was mainly observed in microglia and was upregulated by UDP (1 mM) or PSB 0474 (10 μM). UDP-mediated NO release induced apoptosis in astrocytes, but not in microglia. Conclusions: In LPS treated co-cultures of astrocytes and microglia, UTP is rapidly converted into UDP, which activates P2Y6 receptors inducing the release of NO by microglia that causes astrocyte apoptosis, thus controlling their rate of proliferation and preventing an excessive astrogliosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。