Synthesis and Demulsification Properties of Poly (DMDAAC- co-DAMBAC) (9:1) Copolymer

聚(DMDAAC-co-DAMBAC)(9:1)共聚物的合成及破乳性能

阅读:7
作者:Xu Jia, Minghuan Qian, Wenhui Peng, Xiao Xu, Yuejun Zhang, Xiaolei Zhao

Abstract

Utilizing the copolymerization modification of dimethyl diallyl ammonium chloride (DMDAAC), the high positive charge density of the copolymer could be maintained, thereby facilitating the deficiency of its monomer in the application. In this paper, poly (DMDAAC-co-DAMBAC) (9:1) was synthesized with an aqueous polymerization method using DMDAAC and methyl benzyl diallyl ammonium chloride (DAMBAC) as monomers and 2,2'-azobis [2-methylpropionamidine] dihydrochloride (V50) as an initiator. Targeted to the product's weight-average relative molecular mass (Mw), the response surface methodology (RSM) was used to optimize the preparation process. The optimal process conditions were obtained as follows: w (M) = 80.0%, m (V50):m (M) = 0.00700%, m (Na4EDTA):m (M) = 0.00350%, T1 = 50.0 °C, T2 = 60.0 °C, and T3 = 72.5 °C. The intrinsic viscosity ([η]) of the product was 1.780 dL/g, and the corresponding double bond conversion (Conv.) was 90.25 %. Poly (DMDAAC-co-DAMBAC) (9:1) revealed a highest Mw of 5.637 × 105, together with the polydispersity index d (Mw/Mn) as 1.464. For the demulsification performance of simulated crude oil O/W emulsions, the demulsification rate of poly (DMDAAC-co-DAMBAC) (9:1) could reach 97.73%. Our study has illustrated that the copolymerization of DMDAAC and a small amount of DAMBAC with poor reactivity could significantly improve the relative molecular weight of the polymer, enhance its lipophilicity, and thus the application scope of the polymer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。