Molecular Mechanism of Conformational Crossover of Mefenamic Acid Molecules in scCO2

甲芬那酸分子在 scCO2 中的构象交叉的分子机制

阅读:6
作者:Roman D Oparin, Mikhail A Krestyaninov, Dmitry V Ivlev, Michael G Kiselev

Abstract

In this work, we studied conformational equilibria of molecules of mefenamic acid in its diluted solution in scCO2 under isochoric heating conditions in the temperature range of 140-210 °C along the isochore corresponding to the scCO2 density of 1.1 of its critical value. This phase diagram range totally covers the region of conformational transitions of molecules of mefenamic acid in its saturated solution in scCO2. We found that in the considered phase diagram region, the equilibrium of two conformers is realized in this solution. In the temperature range of 140-180 °C, conformer I related to the first, most stable polymorph of mefenamic acid prevails. In the temperature range of 200-210 °C, conformer II, which is related to the second metastable polymorph becomes dominant. Based on the results of quantum chemical calculations and experimental IR spectroscopy data on the mefenamic acid conformer populations, we classified this temperature-induced conformational crossover as an entropy-driven phenomenon.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。