Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography

通过多光谱光声断层扫描技术利用配体靶向、pH 响应的介孔二氧化硅纳米粒子在体内识别胰腺肿瘤

阅读:7
作者:Marie K Gurka, Dillon Pender, Phillip Chuong, Benjamin L Fouts, Alexander Sobelov, Molly W McNally, Megan Mezera, Shiao Y Woo, Lacey R McNally

Abstract

Despite significant efforts to translate nanotechnology for cancer application, lack of identification of biodistribution/accumulation of these nanovehicles in vivo remains a substantial barrier for successful implementation of theranostic nanoparticles in the clinic. The purpose of the study was to develop a tumor-targeted theranostic nanovehicle for pancreatic cancer detectable by multispectral optoacoustic tomography (MSOT). To improve the tumor specificity of our mesoporous silica nanoparticle (MSN), we utilized a dual targeting strategy: 1) an elevated tumor receptor, urokinase plasminogen activator receptor (UPAR), and 2) the acidic tumor microenvironment. The tumor specificity of the MSN particle was improved with the addition of both chitosan, targeting acidic pH, and urokinase plasminogen activator (UPA), targeting UPAR. Drug release assays confirmed pH responsive release of gemcitabine in vitro. The UPAR specific binding of MSN-UPA nanoparticles was confirmed by reduction in fluorescence signal following MSN-UPA nanoparticle treatment in UPAR positive cells blocked with a UPAR-blocking antibody. Based upon Indocyanine Green encapsulation within the nanoparticles, UPA ligand targeted MSNs demonstrated increased intensity compared to untargeted MSNs at both pH7.4 (7×) and 6.5 (20×); however the signal was much more pronounced at a pH of 6.5 using tissue phantoms (p<0.05). In vivo, MSN-UPA particles demonstrated orthotopic pancreatic tumor specific accumulation compared to liver or kidney as identified using multispectral optoacoustic tomography (p<0.05) and confirmed by ex vivo analysis. By tracking in vivo nanoparticle biodistribution with MSOT, it was shown that pH responsive, ligand targeted MSNs preferentially bind to pancreatic tumors for payload delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。