Impact Of Penetratin Stereochemistry On The Oral Bioavailability Of Insulin-Loaded Solid Lipid Nanoparticles

穿透素立体化学对胰岛素载药固体脂质纳米粒口服生物利用度的影响

阅读:8
作者:Bader B Alsulays, Md Khalid Anwer, Gamal A Soliman, Sultan M Alshehri, El-Sayed Khafagy

Conclusion

Penetratin stereochemistry significantly impacted oral BA of INS-SLNs, which are promising carriers for oral INS administration.

Methods

Insulin-loaded solid nanoparticles, L-penetratin-INS-SLNs (LP-INS-SLNs), and D-penetratin-INS-SLNs (DP-INS-SLNs) were formulated by double emulsification. The developed SLNs were evaluated for particle size, zeta potential (ZP), and drug encapsulation and subjected to differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and evaluated for stability against enzymatic degradation in rat intestinal fluid. Finally, the SLNs were administered to rats to evaluate the BA of INS-SLNs that contained L- and D-penetratin.

Purpose

This study evaluated the stereoisomeric effect of L- and D-penetratin-cell-penetrating peptides (CPPs)-incorporated insulin-loaded solid lipid nanoparticles (INS-SLNs) on the bioavailability (BA) of oral insulin (INS).

Results

The mean particle size, PDI, and ZP values of INS-SLNs, LP-INS-SLNs, and DP-INS-SLNs ranged from 618.5 to 973.0 nm, 0.227 to 0.734, and -17.0 to -23.7 mV, respectively. The encapsulation efficiency (%EE) and drug loading (%DL) of INS-SLNs, LP-INS-SLNs, and DP-INS-SLNs ranged from 59.03% to 67.42% and from 1.62% to 1.82%, respectively. Differential scanning calorimetry and FTIR analyses indicated that INS was successfully encapsulated in SLNs. Enzymatic degradation of DP-INS-SLNs was slower in intestinal fluid, and the half-life (t1/2) was significantly prolonged, compared to all other SLNs. The pharmacological availability (PA) and BA of orally administered LP-INS-SLNs, which were the most effective SLNs, were 13.1% and 15.7% relative to s.c. administration, respectively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。