Seeding, Plating and Electrical Characterization of Gold Nanowires Formed on Self-Assembled DNA Nanotubes

自组装 DNA 纳米管上形成的金纳米线的接种、电镀和电特性

阅读:7
作者:Dulashani R Ranasinghe, Basu R Aryal, Tyler R Westover, Sisi Jia, Robert C Davis, John N Harb, Rebecca Schulman, Adam T Woolley

Abstract

Self-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices. We evaluate two approaches for seeding, gold and palladium, both using gold electroless plating to connect the seeds. These gold nanowires are characterized electrically utilizing electron beam induced deposition of tungsten and four-point probe techniques. Measured resistivity values for 15 successfully studied wires are between 9.3 × 10-6 and 1.2 × 10-3 Ωm. Our work yields new insights into reproducible formation and characterization of metal nanowires on DNA nanotubes, making them promising templates for future nanowires in complex electronic circuitry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。