In vitro and in vivo mapping of drug release after laser ablation thermal therapy with doxorubicin-loaded hollow gold nanoshells using fluorescence and photoacoustic imaging

使用荧光和光声成像对载阿霉素的空心金纳米壳进行激光烧蚀热疗后的药物释放进行体外和体内映射

阅读:5
作者:Hannah J Lee, Yang Liu, Jun Zhao, Min Zhou, Richard R Bouchard, Trevor Mitcham, Michael Wallace, R Jason Stafford, Chun Li, Sanjay Gupta, Marites P Melancon

Abstract

Doxorubicin-loaded hollow gold nanoshells (Dox@PEG-HAuNS) increase the efficacy of photothermal ablation (PTA) not only by mediating efficient PTA but also through chemotherapy, and therefore have potential utility for local anticancer therapy. However, in vivo real-time monitoring of Dox release and temperature achieved during the laser ablation technique has not been previously demonstrated before. In this study, we used fluorescence optical imaging to map the release of Dox from Dox@PEG-HAuNS and photoacoustic imaging to monitor the tumor temperature achieved during near-infrared laser-induced photothermal heating in vitro and in vivo. In vitro, treatment with a 3-W laser was sufficient to initiate the release of Dox from Dox@PEG-HAuNS (1:3:1 wt/wt, 1.32 × 10(12)particles/mL). Laser powers of 3 and 6W achieved ablative temperatures of more than 50°C. In 4T1 tumor-bearing nude mice that received intratumoral or intravenous injections of Dox@PEG-HAuNS, fluorescence optical imaging (emission wavelength = 600 nm, excitation wavelength = 500 nm) revealed that the fluorescence intensity in surface laser-treated tumors 24h after treatment was significantly higher than that in untreated tumors (p = 0.015 for intratumoral, p = 0.008 for intravenous). Similar results were obtained using an interstitial laser to irradiate tumors following the intravenous injection of Dox@PEG-HAuNS (p = 0.002 at t = 24h). Photoacoustic imaging (acquisition wavelength = 800 nm) revealed that laser treatment caused a substantial increase in tumor temperature, from 37 °C to ablative temperatures of more than 50 °C. Ex vivo analysis revealed that the fluorescence intensity of laser-treated tumors was twice as high as that of untreated tumors (p = 0.009). Histological analysis confirmed that intratumoral injection of Dox@PEG-HAuNS and laser treatment caused significantly more tumor necrosis compared to tumors that were not treated with laser (p<0.001). On the basis of these findings, we conclude that fluorescence optical imaging and photoacoustic imaging are promising approaches to assessing Dox release and monitoring temperature, respectively, after Dox@PEG-HAuNS-mediated thermal ablation therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。