Endogenous β-glucocerebrosidase activity in Abca12⁻/⁻epidermis elevates ceramide levels after topical lipid application but does not restore barrier function

Abca12⁻/⁻表皮中的内源性 β-葡萄糖脑苷脂酶活性在局部应用脂质后提高神经酰胺水平,但不会恢复屏障功能

阅读:7
作者:Jorge F Haller, Paul Cavallaro, Nicholas J Hernandez, Lee Dolat, Stephanie J Soscia, Ruth Welti, Gregory A Grabowski, Michael L Fitzgerald, Mason W Freeman

Abstract

ABCA12 mutations disrupt the skin barrier and cause harlequin ichthyosis. We previously showed Abca12(-/-) skin has increased glucosylceramide (GlcCer) and correspondingly lower amounts of ceramide (Cer). To examine why loss of ABCA12 leads to accumulation of GlcCer, de novo sphingolipid synthesis was assayed using [(14)C]serine labeling in ex vivo skin cultures. A defect was found in β-glucocerebrosidase (GCase) processing of newly synthesized GlcCer species. This was not due to a decline in GCase function. Abca12(-/-) epidermis had 5-fold more GCase protein (n = 4, P < 0.01), and a 5-fold increase in GCase activity (n = 3, P < 0.05). As with Abca12(+/+) epidermis, immunostaining in null skin showed a typical interstitial distribution of the GCase protein in the Abca12(-/-) stratum corneum. Hence, we tested whether the block in GlcCer conversion could be circumvented by topically providing GlcCer. This approach restored up to 15% of the lost Cer products of GCase activity in the Abca12(-/-) epidermis. However, this level of barrier ceramide replacement did not significantly reduce trans-epidermal water loss function. Our results indicate loss of ABCA12 function results in a failure of precursor GlcCer substrate to productively interact with an intact GCase enzyme, and they support a model of ABCA12 function that is critical for transporting GlcCer into lamellar bodies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。