Dihydroartemisinin Ameliorated Ovalbumin-Induced Asthma in Mice via Regulation of MiR-183C

双氢青蒿素通过调节 MiR-183C 改善小鼠卵清蛋白诱发的哮喘

阅读:8
作者:Hui Zhu, Wei Ji

Abstract

BACKGROUND The purpose of the present study was to investigate the function and mechanism of dihydroartemisinin (DHA) in treating ovalbumin-induced asthma in BALB/c mice. MATERIAL AND METHODS Thirty female BALB/c mice were randomly separated into 3 groups: the control group, the asthma model group stimulated by ovalbumin (OVA group), and the DHA treatment group (DHA group). The therapeutic effects and potential pharmacological mechanisms of DHA were specifically clarified by examining its effects on asthma-related phenomena, such as body weight, lung function, cell counts in bronchoalveolar lavage fluid (BALF), and hemotoxin and eosin staining. In addition, the expression of inflammatory factors was checked by enzyme-linked immunosorbent assay kits, and fractions of Th17 cells were detected by FACS analysis. Moreover, the downstream molecular pathway of IL-6/Stat3 (interleukin-6/signal transducer and activator of transcription 3) and expression of miR-183C was investigated by western blot and/or quantitative real-time polymerase chain reaction. Luciferase assay was used to reveal the function of miR-183C on the transcriptional regulation of Foxo1 (forkhead box O). RESULTS DHA administration significantly relieved the severity of the asthma through its effect on body weight, survival rate, and airway pressure. DHA was able to ameliorate lung damage in terms of pathological morphology and it reduced the percentage of helper T 17 (Th17) cells and the secretion of cytokines. As a result, the activity of the IL-6/Stat3 pathway was inhibited by DHA. In addition, the adoption of DHA decreased the expression of miR-183C but increased the expression of the transcription factor Foxo1. CONCLUSIONS Our results suggest that the therapeutic effects of DHA on asthma are partially realized via the regulation of miR-183C and IL-6/Stat3 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。