New Insights into the Mechanical Behavior of Thin-Film Composite Polymeric Membranes

薄膜复合聚合物膜机械行为的新见解

阅读:5
作者:Fatima Ghassan Alabtah, Abedalkader Alkhouzaam, Marwan Khraisheh

Abstract

Limited predictions of thin-film composite (TFC) membranes' behavior and functional life exist due to the lack of accurate data on their mechanical behavior under different operational conditions. A comprehensive investigation of the mechanical behavior of TFC membranes addressing deformation and failure, temperature and strain rate sensitivity, and anisotropy is presented. Tensile tests were conducted on commercial membranes as well as on individual membrane layers prepared in our laboratories. The results reveal the overall mechanical strength of the membrane is provided by the polyester layer (bottom layer), while the rupture stress for the middle and top layers is at least 10 times smaller than that of the polyester layer. High anisotropic behavior was observed and is attributed to the nonwoven structure of the polyester layer. Rupture stress in the transverse (90°) direction was one-third of the rupture stress in the casting direction. Limited temperature and strain rate dependence was observed in the temperature range that exists during operation. Scanning electron microscopy images of the fractured surfaces were also analyzed and correlated with the mechanical behavior. The presented results provide new insights into the mechanical behavior of thin-film composite membranes and can be used to inform novel membrane designs and fabrication techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。