Hierarchical multi-shell hollow micro-meso-macroporous silica for Cr(VI) adsorption

多级壳中空微介孔二氧化硅用于 Cr(VI) 吸附

阅读:10
作者:Roozbeh Soltani, Azam Marjani, Reza Soltani, Saeed Shirazian

Abstract

The development of easier, cheaper, and more effective synthetic strategies for hierarchical multimodal porous materials and multi-shell hollow spheres remains a challenging topic to utilize them as adsorbents in environmental applications. Here, the hierarchical architecture of multi-shell hollow micro-meso-macroporous silica with pollen-like morphology (MS-HMS-PL) has been successfully synthesized via a facile soft-templating approach and characterized for the first time. MS-HMS-PL sub-microspheres showed a trimodal hierarchical pore architecture with a high surface area of 414.5 m2 g-1, surpassing most of the previously reported multishelled hollow nanomaterials. Due to its facile preparation route and good physicochemical properties, MS-HMS-PL could be a potential candidate material in water purification, catalysis, and drug delivery. To investigate the applicability of MS-HMS-PL as an adsorbent, its adsorption performance for Cr(VI) in water was evaluated. Important adsorption factors affecting the adsorption capacity of adsorbent were systematically studied and Kinetics, isotherms, and thermodynamics parameters were computed via the non-linear fitting technique. The maximum capacity of adsorption computed from the Langmuir isotherm equation for Cr(VI) on MS-HMS-PL was 257.67 mg g-1 at 293 K and optimum conditions (pH 4.0, adsorbent dosage 5.0 mg, and contact time 90 min).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。