CAPA-IVM improves the cytoplasmic quality of in vitro-matured oocytes from unstimulated mice

CAPA-IVM 可改善未受刺激小鼠体外成熟卵母细胞的细胞质质量

阅读:4
作者:Xueqi Gong, Lin Shen, Hanwang Zhang, Jihui Ai, Robert B Gilchrist, Yiqing Zhao

Abstract

Ovarian tissue oocyte (OTO) in vitro maturation (IVM) is a strategy to improve fertility preservation efficiency. Here, the effects of capacitation IVM (CAPA-IVM) on OTO function were investigated. Immature cumulus-oocyte complexes (COCs) from unstimulated 28-day-old mouse ovaries (mimicking OTOs) underwent CAPA-IVM, standard IVM (S-IVM) or in vivo maturation following ovarian stimulation (OS; positive control), and oocyte meiotic maturation and cytoplasmic quality were assessed. CAPA-IVM resulted in improved oocyte meiotic maturation (P < 0.05) and cumulus expansion (P < 0.0001) compared to S-IVM, with expansion comparable to the OS group. MII OTO ROS was lower after CAPA-IVM than S-IVM (P < 0.0001) but not as low as in the OS group (P = 0.036). CAPA-IVM resulted in a better oocyte mitochondrial distribution than S-IVM (P < 0.05) and was similar to the OS group (P > 0.05). Mitochondrial membrane potential in MII OTOs was higher after CAPA-IVM than S-IVM and OS (P < 0.0001). Compared with S-IVM, CAPA-IVM resulted in lower rates of spindle/chromosome configuration and cortical granule distribution abnormalities (P < 0.05), which were similar to OS levels (P > 0.05). MII OTO intracellular Ca2+ levels were similar in the CAPA-IVM and OS groups (P > 0.05), while S-IVM decreased intracellular Ca2+ (P < 0.05). CAPA-IVM and S-IVM decreased mitochondrial Ca2+ levels (P < 0.05). CAPA-IVM increased expression of antioxidant genes (Sod2 and Sirt1) and Egfr (P < 0.05) but not apoptotic genes (Bcl2, Bax and Bcl2/Bax; P > 0.05). CAPA-IVM increased the OTO maturation rate and quality of oocytes from unstimulated mice to the extent that many features of oocyte cytoplasmic quality were comparable to superovulated in vivo matured oocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。