High spatial resolution electrochemical biosensing using reflected light microscopy

利用反射光显微镜进行高空间分辨率电化学生物传感

阅读:5
作者:Raluca-Elena Munteanu, Ran Ye, Cristina Polonschii, Adrian Ruff, Mihaela Gheorghiu, Eugen Gheorghiu, Rabah Boukherroub, Wolfgang Schuhmann, Sorin Melinte, Szilveszter Gáspár

Abstract

If the analyte does not only change the electrochemical but also the optical properties of the electrode/solution interface, the spatial resolution of an electrochemical sensor can be substantially enhanced by combining the electrochemical sensor with optical microscopy. In order to demonstrate this, electrochemical biosensors for the detection of hydrogen peroxide and glucose were developed by drop casting enzyme and redox polymer mixtures onto planar, optically transparent electrodes. These biosensors generate current signals proportional to the analyte concentration via a reaction sequence which ultimately changes the oxidation state of the redox polymer. Images of the interface of these biosensors were acquired using bright field reflected light microscopy (BFRLM). Analysis showed that the intensity of these images is higher when the redox polymer is oxidized than when it is reduced. It also revealed that the time needed for the redox polymer to change oxidation state can be assayed optically and is dependent on the concentration of the analyte. By combining the biosensor for hydrogen peroxide detection with BFRLM, it was possible to determine hydrogen peroxide in concentrations as low as 12.5 µM with a spatial resolution of 12 µm × 12 µm, without the need for the fabrication of microelectrodes of these dimensions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。