Highly Sensitive and Selective Toluene Gas Sensors Based on ZnO Nanoflowers Decorated with Bimetallic AuPt

基于双金属 AuPt 修饰的 ZnO 纳米花的高灵敏度和选择性甲苯气体传感器

阅读:4
作者:Huiting Peng, Yiping Liu, Yinfeng Shen, Ling Xu, Jicun Lu, Ming Li, Hong-Liang Lu, Liming Gao

Abstract

Efficient sensors for toluene detecting are urgently needed to meet people's growing demands for both environment and personal health. Metal oxide semiconductor (MOS)-based sensors have become brilliant candidates for the detection of toluene because of their superior performance over gas sensing. However, gas sensors based on pure MOS have certain limitations in selectivity, operating temperature, and long-term stability, which hinders their further practical applications. Noble metals (including Ag, Au, Pt, Pd, etc.) have the ability to enhance the performance of MOS-based sensors via surface functionalization. Herein, ZnO nanoflowers (ZNFs) modified with bimetallic AuPt are prepared for toluene detection through hydrothermal method. The response of a AuPt@ZNF-based gas sensor can reach 69.7 at 175 °C, which is 30 times, 9 times, and 10 times higher than that of the original ZNFs, Au@ZNFs, and Pt@ZNFs, respectively. Furthermore, the sensor also has a lower optimal operating temperature (175 °C), good stability (94% of previous response after one month), and high selectivity towards toluene, which is the result of the combined influence of the electronic and chemical sensitization of noble metals, as well as the unique synergistic effect of the AuPt alloy. In summary, AuPt@ZNF-based sensors can be further applied in toluene detection in practical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。