Heterogeneous Reactions of Phenol on Different Components of Mineral Dust Aerosol: Formation of Oxidized Organic and Nitro-Phenolic Compounds

苯酚对矿物尘埃气溶胶不同成分的非均相反应:氧化有机化合物和硝基酚化合物的形成

阅读:9
作者:Eshani Hettiarachchi, Vicki H Grassian

Abstract

Phenol, a common semi-volatile compound associated with different emissions including from plants and biomass burning, as well as anthropogenic emissions and its derivatives, are important components of secondary organic aerosols (SOAs). Gas and aqueous phase reactions of phenol, in the presence of photochemical drivers, are fairly well understood. However, despite observations showing aromatic content within SOA size and mass increases during dust episodes, the heterogeneous reactions of phenol with mineral dusts are poorly understood. In the current study, surface reactions of phenol at the gas/solid interface with different components of mineral dust including SiO2, α-Fe2O3, and TiO2 have been investigated. Whereas reversible surface adsorption of phenol occurs on SiO2 surfaces, for both α-Fe2O3 and TiO2 surfaces, phenol reacts to form a wide range of OH substituted aromatic products. For α-Fe2O3 surfaces that have been nitrated by gas-phase reactions of nitric acid prior to exposure to phenol, unique compounds form on the surface including nitro-phenolic compounds. Moreover, additional surface chemistry was observed when adsorbed nitro-phenolic products were exposed to gas-phase SO2 as a result of the formation of adsorbed nitrite from nitrate redox chemistry with adsorbed SO2. Overall, this study reveals the extensive chemistry as well as the complexity of reactions of prevalent organic compounds leading to the formation of SOA on mineral surfaces.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。