Lipooligosaccharide structure contributes to multiple steps in the virulence of Neisseria meningitidis

脂寡糖结构参与脑膜炎奈瑟菌毒力的多个步骤

阅读:6
作者:Laura Plant, Johanna Sundqvist, Susu Zughaier, Lena Lövkvist, David S Stephens, Ann-Beth Jonsson

Abstract

Lipooligosaccharide (LOS) of Neisseria meningitidis has been implicated in meningococcal interaction with host epithelial cells and is a major factor contributing to the human proinflammatory response to meningococci. LOS mutants of the encapsulated N. meningitidis serogroup B strain NMB were used to further determine the importance of the LOS structure in in vitro adherence and invasion of human pharyngeal epithelial cells by meningococci and to study pathogenicity in a mouse (CD46 transgenic) model of meningococcal disease. The wild-type strain [NeuNAc-Galbeta-GlcNAc-Galbeta-Glcbeta-Hep2 (GlcNAc, Glcalpha) 3-deoxy-D-manno-2-octulosonic acid (KDO2)-lipid A; 1,4' bisphosphorylated], although poorly adherent, rapidly invaded an epithelial cell layer in vitro, survived and multiplied early in blood, reached the cerebrospinal fluid, and caused lethal disease in the mouse model. In contrast, the Hep2 (GlcNAc) KDO2-lipid A (pgm) mutant, which was highly adherent to cultured epithelial cells, caused significantly less bacteremia and mortality in the mouse model. The Hep2-KDO2-lipid A (rfaK) mutant was shown to be moderately adherent and to cause levels of bacteremia and mortality similar to those caused by the wild-type strain in the mouse model. The KDO2-lipid A (gmhB) mutant, which lacks the heptose disaccharide in the inner core of LOS, avidly attached to epithelial cells but was otherwise avirulent. Disease development correlated with expression of specific LOS structures and was associated with lower adherence but rapid meningococcal passage to and survival in the bloodstream, induction of proinflammatory cytokines, and the crossing of the blood-brain barrier. Taken together, the results of this study further define the importance of the LOS structure as a virulence component involved in multiple steps in the pathogenesis of N. meningitidis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。