Effect of Heat-Moisture Treatment on the Physicochemical Properties and Starch Digestibility of Mix Powder (Wheat Flour-Black Soybean Flour) and Corresponding Cookies

湿热处理对混合粉(小麦粉-黑豆粉)及饼干理化性质和淀粉消化率的影响

阅读:9
作者:Liping Yang, Sunyan Wang, Songnan Li, Gongqi Zhao, Chuanlai Du

Abstract

In order to improve the nutritional value and reduce starch the digestibility of black soybean cookies, superfine black soybean flour was modified by heat-moisture treatment (HMT). The physicochemical properties, structure analysis of the flour samples and corresponding dough, and nutritional, physical, and textural properties of the cookies were investigated. After HMT, the water and lactic acid retention capacity and the oil binding capacity of mix powder dramatically increased, being almost twice the value of the untreated sample. HMT increased gelatinization temperature by about 10 °C but decreased gelatinization enthalpy. HMT had no apparent effect on the morphology and size of granules, but some cracks and pores appeared on the HMT-mix powder granules and corresponding dough. Fourier transform infrared spectroscopy analysis showed that the ordered structure of dough was unaffected during HMT. After HMT, the thickness, density, and baking loss of the cookies increased, and the spread ratio decreased. HMT dramatically increased the chemical score of cookies from 12.35% in mix powder cookies to 19.64% in HMT-mix powder cookies. HMT decreased the rapidly digestible starch content, while the slowly digestible starch increased from 45.97% in mix powder cookies to 49.31% in HMT-mix powder cookies, and RS increased from 21.64% to 26.87%. Overall, HMT did not have a negative effect on the processing properties and microstructure and secondary structure of the dough, or the physical properties and quality of the cookies, but significantly improved the nutritional properties and decreased the starch digestibility of the cookies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。