Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion

构建重组酿酒酵母菌株用于苹果酸至富马酸的转化

阅读:15
作者:Annica Steyn, Marinda Viljoen-Bloom, Willem Heber Van Zyl

Abstract

Saccharomyces cerevisiae with its robustness and good acid tolerance, is an attractive candidate for use in various industries, including waste-based biorefineries where a high-value organic acid is produced, such as fumaric acid could be beneficial. However, this yeast is not a natural producer of dicarboxylic acids, and genetic engineering of S. cerevisiae strains is required to achieve this outcome. Disruption of the natural FUM1 gene and the recombinant expression of fumarase and malate transporter genes improved the malic acid-to-fumaric acid conversion by engineered S. cerevisiae strains. The efficacy of the strains was significantly influenced by the source of the fumarase gene (yeast versus bacterial), the presence of the XYNSEC signal secretion signal and the available oxygen in synthetic media cultivations. The ΔFUM1Ckr_fum + mae1 and ΔFUM1(ss)Ckr_fum + mae1 strains converted extracellular malic acid into 0.98 and 1.11 g/L fumaric acid under aerobic conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。