Silica Coated Bi2Se3 Topological Insulator Nanoparticles: An Alternative Route to Retain Their Optical Properties and Make Them Biocompatible

二氧化硅包覆的 Bi2Se3 拓扑绝缘体纳米粒子:保留其光学特性并使其具有生物相容性的替代方法

阅读:4
作者:Blaž Belec, Nina Kostevšek, Giulia Della Pelle, Sebastjan Nemec, Slavko Kralj, Martina Bergant Marušič, Sandra Gardonio, Mattia Fanetti, Matjaž Valant

Abstract

Localized surface plasmon resonance (LSPR) is the cause of the photo-thermal effect observed in topological insulator (TI) bismuth selenide (Bi2Se3) nanoparticles. These plasmonic properties, which are thought to be caused by its particular topological surface state (TSS), make the material interesting for application in the field of medical diagnosis and therapy. However, to be applied, the nanoparticles have to be coated with a protective surface layer, which prevents agglomeration and dissolution in the physiological medium. In this work, we investigated the possibility of using silica as a biocompatible coating for Bi2Se3 nanoparticles, instead of the commonly used ethylene-glycol, which, as is presented in this work, is not biocompatible and alters/masks the optical properties of TI. We successfully prepared Bi2Se3 nanoparticles coated with different silica layer thicknesses. Such nanoparticles, except those with a thick, ≈200 nm silica layer, retained their optical properties. Compared to ethylene-glycol coated nanoparticles, these silica coated nanoparticles displayed an improved photo-thermal conversion, which increased with the increasing thickness of the silica layer. To reach the desired temperatures, a 10-100 times lower concentration of photo-thermal nanoparticles was needed. In vitro experiments on erythrocytes and HeLa cells showed that, unlike ethylene glycol coated nanoparticles, silica coated nanoparticles are biocompatible.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。