Early life stress in mice alters gut microbiota independent of maternal microbiota inheritance

小鼠早期生活压力改变肠道菌群,且与母体菌群遗传无关

阅读:5
作者:Keri M Kemp, Jackson Colson, Robin G Lorenz, Craig L Maynard, Jennifer S Pollock

Abstract

Exposure to early life stress (ELS) is associated with a greater risk of chronic disease development including depression and cardiovascular disease. Altered gut microbiota has been linked to both depression and cardiovascular disease in mice and humans. Rodent models of early life neglect are used to characterize the mechanistic links between early life stress (ELS) and the risk of disease later in life. However, little is understood about ELS exposure and the gut microbiota in the young mice and the influence of the maternal inheritance of the gut microbiota. We used a mouse model of ELS, maternal separation with early weaning (MSEW), and normally reared mice to determine whether the neonate microbiota is altered, and if so, are the differences attributable to changes in dam microbiota that are then transmitted to their offspring. Individual amplicon sequence variants (ASVs) displayed differential abundance in the microbiota of MSEW compared with normally reared pups at postnatal day (PD) 28. Additionally, ELS exposure reduced the alpha diversity and altered microbial community composition at PD28. The composition, levels of alpha diversity, and abundance of individual ASVs in the microbiota of dams were similar from MSEW or normally reared cohorts. Thus, the observed shifts in the abundance of individual bacterial ASVs in the neonates and young pups are likely driven by endogenous effects of MSEW in the offspring host and are not due to inherited differences from the dam. This knowledge suggests that exposure to ELS has a direct effect on microbial factors on the risk of chronic disease development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。