Hybrid Biosilica Nanoparticles for in-vivo Targeted Inhibition of Colorectal Cancer Growth and Label-Free Imaging

混合生物硅纳米粒子用于体内靶向抑制结直肠癌生长和无标记成像

阅读:4
作者:Donatella Delle Cave #, Maria Mangini #, Chiara Tramontano #, Luca De Stefano, Marco Corona, Ilaria Rea, Anna Chiara De Luca, Enza Lonardo

Background

Metastasis-initiating cells are key players in progression, resistance, and relapse of colorectal cancer (CRC), by leveraging the regulatory relationship between Transforming Growth Factor-beta (TGF-β) signaling and anti-L1 cell adhesion molecule (L1CAM).

Conclusion

This research highlights the multifunctional capabilities of engineered biosilica NPs, which offer new insights in targeted CRC therapy and imaging, improving patient outcomes and paving the way for personalized therapies.

Methods

This study introduces a novel strategy for CRC targeted therapy and imaging based on the use of a hybrid nanosystem made of gold nanoparticles-covered porous biosilica further modified with the (L1CAM) antibody.

Results

The nanosystem intracellularly delivers galunisertib (LY), a TGF-β inhibitor, aiming to inhibit epithelial-mesenchymal transition (EMT), a process pivotal for metastasis. Anti-L1CAM antibody-functionalized nanoparticles (NPs) target tumor-initiating cells expressing L1CAM, inhibiting cancer growth. The number of antibody molecules conjugated to the single NP is precisely quantified, revealing a high surface coverage that facilitates the tumor targeting. The therapeutic efficacy of the nanosystem is investigated in organoid-like cultures of CRC cells and in vivo mouse models, showing a significant reduction in tumor growth. The spatial distribution of NPs within CRC tumors from mice is investigated using a label-free optical approach based on Raman micro-spectroscopy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。