Structural variant allelic heterogeneity in MECP2 duplication syndrome provides insight into clinical severity and variability of disease expression

MECP2 重复综合征中的结构变异等位基因异质性有助于了解临床严重程度和疾病表达的变化

阅读:5
作者:Davut Pehlivan #, Jesse D Bengtsson #, Sameer S Bajikar #, Christopher M Grochowski, Ming Yin Lun, Mira Gandhi, Angad Jolly, Alexander J Trostle, Holly K Harris, Bernhard Suter, Sukru Aras, Melissa B Ramocki, Haowei Du, Michele G Mehaffey, KyungHee Park, Ellen Wilkey, Cemal Karakas, Jesper J Eisfeld

Background

MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

Conclusion

In aggregate, this combined analysis uncovers an interplay between MECP2 dosage, genomic rearrangement structure and phenotypic traits. Whereas the level of MECP2 is a key determinant of the phenotype, the DNA rearrangement structure can contribute to clinical severity and disease expression variability. Employing this type of analytical approach will advance our understanding of the impact of genomic rearrangements on genomic disorders and may help guide more targeted therapeutic approaches.

Methods

To study the role of the genomic rearrangement structures on an individual's clinical phenotypic variability, we employed a comprehensive genomics, transcriptomics, and deep phenotyping analysis approach on 137 individuals affected by MRXSL. Genomic structural information was correlated with transcriptomic and quantitative phenotypic analysis using Human Phenotype Ontology (HPO) semantic similarity scores.

Results

Duplication sizes in the cohort ranging from 64.6 kb to 16.5 Mb were classified into four categories comprising of tandem duplications (48%), terminal duplications (22%), inverted triplications (20%), and other CGRs (10%). Most of the terminal duplication structures consist of translocations (65%) followed by recombinant chromosomes (23%). Notably, 65% of de novo events occurred in the Terminal duplication group in contrast with 17% observed in Tandem duplications. RNA-seq data from lymphoblastoid cell lines indicated that the MECP2 transcript quantity in MECP2 triplications is statistically different from all duplications, but not between other classes of genomic structures. We also observed a significant (p < 0.05) correlation (Pearson R = 0.6, Spearman p = 0.63) between the log-transformed MECP2 RNA levels and MECP2 protein levels, demonstrating that genomic aberrations spanning MECP2 lead to altered MECP2 RNA and MECP2 protein levels. Genotype-phenotype analyses indicated a gradual worsening of phenotypic features, including overall survival, developmental levels, microcephaly, epilepsy, and genitourinary/eye abnormalities in the following order: Tandem duplications, Other complex duplications, Terminal duplications/Translocations, and Triplications encompassing MECP2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。