Blockade of Hepatocyte PCSK9 Ameliorates Hepatic Ischemia-Reperfusion Injury by Promoting Pink1-Parkin-Mediated Mitophagy

阻断肝细胞 PCSK9 可促进 Pink1-Parkin 介导的线粒体自噬,从而改善肝脏缺血再灌注损伤

阅读:4
作者:Yu Zhang, Ziyi Wang, Chenyang Jia, Wenjie Yu, Xiangdong Li, Nan Xia, Huiling Nie, Likalamu Pascalia Wikana, Minhao Chen, Yong Ni, Sheng Han, Liyong Pu

Aims

Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury.

Background & aims

Hepatic ischemia-reperfusion injury is a significant complication of partial hepatic resection and liver transplantation, impacting the prognosis of patients undergoing liver surgery. The protein proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily synthesized by hepatocytes and has been implicated in myocardial ischemic diseases. However, the role of PCSK9 in hepatic ischemia-reperfusion injury remains unclear. This study aims to investigate the role and mechanism of PCSK9 in hepatic ischemia-reperfusion injury.

Conclusions

Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.

Methods

We first examined the expression of PCSK9 in mouse warm ischemia-reperfusion models and AML12 cells subjected to hypoxia/reoxygenation. Subsequently, we explored the impact of PCSK9 on liver ischemia-reperfusion injury by assessing mitochondrial damage and the resulting inflammatory response.

Results

Our findings reveal that PCSK9 is up-regulated in response to ischemia-reperfusion injury and exacerbates hepatic ischemia-reperfusion injury. Blocking PCSK9 can alleviate hepatocyte mitochondrial damage and the consequent inflammatory response mediated by ischemia-reperfusion. Mechanistically, this protective effect is dependent on mitophagy. Conclusions: Inhibiting PCSK9 in hepatocytes attenuates the inflammatory responses triggered by reactive oxygen species and mitochondrial DNA by promoting PINK1-Parkin-mediated mitophagy. This, in turn, ameliorates hepatic ischemia-reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。