Propofol Regulates ER Stress to Inhibit Tumour Growth and Sensitize Osteosarcoma to Doxorubicin

丙泊酚调节内质网应激以抑制肿瘤生长并使骨肉瘤对阿霉素敏感

阅读:7
作者:Hua Wei, Xinhui Du, Huaping Zhao, Peipei Sun, Jianjun Yang

Abstract

Osteosarcoma is the most common malignant bone tumour affecting children and young adults. The antitumour role of propofol, a widely used intravenous sedative-hypnotic agent, has been recently reported in different cancer types. In this study, we aimed to assess the role of propofol on osteosarcoma and explore the possible mechanisms. Propofol of increasing concentrations (2.5, 5, 10, and 20 μg/ml) was used to treat the MG63 and 143B cells for 72 hours, and the CCK8 assay was applied to evaluate the tumour cell proliferation. Tumour cell migration and invasion were assessed with the transwell assay. The tumour cells were also treated with doxorubicin single agent or in combination with propofol to explore their synergic role. Differential expressed genes after propofol treatment were obtained and functionally assessed with bioinformatic tools. Expression of ER stress markers CHOP, p-eIF2α, and XBP1s was evaluated to validate the activation of ER stress response with western blot and qRT-PCR. The statistical analyses were performed with R v4.2.1. Propofol treatment led to significant growth inhibition in MG63 and 143B cells in a dose-dependent manner (p < 0.05). Osteosarcoma migration (MG63 91.4 (82-102) vs. 56.8 (49-65), p < 0.05; 143B 96.6 (77-104) vs. 45.4 (28-54), p < 0.05) and invasion (MG63 68.6 (61-80) vs. 32 (25-39), p < 0.05; 143B 90.6 (72-100) vs. 39.2 (26-55), p < 0.05) were reduced after propofol treatment. Doxorubicin sensitivity was increased after propofol treatment compared with the control group (p < 0.05). Bioinformatic analysis showed significant functional enrichment in ER stress response after propofol treatment. Upregulation of CHOP, p-eIF2α, and XBP1s was detected in MG63 and 143B secondary to propofol treatment. In conclusion, we found that propofol treatment suppressed osteosarcoma proliferation and invasion and had a synergic role with doxorubicin by inducing ER stress. Our findings provided a novel option in osteosarcoma therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。