Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide

使用 PAA 功能化氧化石墨烯提高 BCNU 在治疗神经胶质瘤细胞中的热稳定性和功效

阅读:5
作者:Yu-Jen Lu, Hung-Wei Yang, Sheng-Che Hung, Chiung-Yin Huang, Shin-Ming Li, Chen-Chi M Ma, Pin-Yuan Chen, Hong-Chieh Tsai, Kuo-Chen Wei, Jyh-Ping Chen

Background

1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a commercial chemotherapeutic drug for treating malignant brain tumors, has poor thermal stability and a short half-life. Immobilization of BCNU on a nanocarrier might increase the thermal stability of BCNU and extend its half-life.

Conclusion

Nanosized PAA-GO serves as an efficient BCNU nanocarrier by covalent binding. This nanocarrier will be a promising new vehicle for an advanced drug delivery system in cancer therapy.

Methods

Nanosized graphene oxide (GO) could be modified by polyacrylic acid (PAA) to improve the aqueous solubility and increase the cell penetration efficacy of the nanocarrier. PAA-GO intended as a drug carrier for BCNU was prepared and characterized in this study. The size and thickness of PAA-GO was investigated by transmission electron microscopy and atomic force microscopy, and the presence of PAA functional groups was confirmed by electron spectroscopy for chemical analysis and thermogravimetric analysis. BCNU was conjugated to PAA-GO by covalent binding for specific killing of cancer cells, which could also enhance the thermal stability of the drug.

Results

Single layer PAA-GO (about 1.9 nm) with a lateral width as small as 36 nm was successfully prepared. The optimum drug immobilization condition was by reacting 0.5 mg PAA-GO with 0.4 mg BCNU, and the drug-loading capacity and residual drug activity were 198 μg BCNU/mg PAA-GO and 70%, respectively. This nanocarrier significantly prolonged the half-life of bound BCNU from 19 to 43 hours compared with free drug and showed efficient intracellular uptake by GL261 cancer cells. The in vitro anticancer efficacy of PAA-GO-BCNU was demonstrated by a 30% increase in DNA interstrand cross-linking and a 77% decrease in the IC(50) value toward GL261 compared with the same dosage of free drug.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。