Advanced glycation end products promote intervertebral disc degeneration by transactivation of matrix metallopeptidase genes

晚期糖基化终产物通过基质金属肽酶基因的转录激活促进椎间盘退变

阅读:7
作者:Changchun Tseng, Bin Chen, Yingchao Han, Kun Wang, Qingxin Song, Hongxing Shen, Zhi Chen

Conclusion

Our results revealed that HAGEs instigate IDD via the PAK1/pPPRC1-p300/CBP-AP1 signaling pathway. This insight can guide therapeutic strategies to slow IDD progression in prediabetic/diabetic patients.

Methods

Matrix metallopeptidase (MMP) gene mRNA levels were assessed using RT-qPCR. Immunoprecipitation and co-immunoprecipitation were performed to identify the transcriptional complex regulating MMP expression due to AGEs. The preventive effects of inhibitors targeting this complex were tested in mice on high AGE diets.

Objective

Examine the mechanism by which advanced glycation end products (AGEs) induce intervertebral disc degeneration (IDD) in C57BL/6J mice.

Results

IDD and AGE accumulation were evident in mice on high-AGE diets (HAGEs), persisting across dietary shifts but absent in mice exclusively on low-AGE diets. Molecularly, HAGEs activated p21-activated kinase 1 (PAK1), prompting peroxisome proliferator-activated receptor gamma coactivator-related protein 1 (PPRC1) phosphorylation. Ubiquitin-specific protease 12 (USP12) interacted with the phosphorylated PPRC1 (pPPRC1), safeguarding it from proteasomal degradation. This pPPRC1, in collaboration with two histone acetyltransferases p300/CREB-binding protein (CBP) and a transcription factor activator protein 1(AP1), enhanced the expression of 12 MMP genes (MMP1a/1b/3/7/9/10/12/13/16/19/23/28). In vitro AGE exposure on nucleus pulposus and annulus fibrosus cells replicated this gene activation pattern, driven by the PAK1/pPPRC1-p300/CBP-AP1 pathway. The application of PAK1, p300, and AP1 inhibitors reduced pPPRC1-p300/CBP-AP1 binding to MMP promoters, diminishing their expression. These inhibitors effectively thwarted IDD in HAGE mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。