Effects of different diets used to induce obesity/metabolic syndrome on bladder function in rats

不同饮食诱导肥胖/代谢综合征对大鼠膀胱功能的影响

阅读:5
作者:Liyang Wu, Mingshuai Wang, Shaimaa Maher, Pingfu Fu, Dan Cai, Bingcheng Wang, Sanjay Gupta, Adonis Hijaz, Firouz Daneshgari, Guiming Liu

Abstract

Preclinical and human studies on the relationship between obesity/metabolic syndrome (MetS) and lower urinary tract dysfunction (LUTD) are inconsistent. We compared the temporal effects of feeding four different diets used to induce obesity/MetS, including 60% fructose, 2% cholesterol +10% lard, 30% fructose + 20% lard, or 32.5% lard diet, up to 42 wk, on metabolic parameters and bladder function in male Sprague-Dawley rats. Rats fed a 30% fructose + 20% lard or 32.5% lard diet consumed less food (grams), but only the 32.5% lard diet group took in more calories. Feeding rats a 60% fructose or 30% fructose + 20% lard diet led to glucose intolerance and increased blood pressure. Higher body weight and increased cholesterol levels were observed in the rats maintained on a 2% cholesterol +10% lard diet, whereas exposure to a 32.5% lard diet affected most of the above parameters. Voiding behavior measurement showed that voiding frequency and the total voided volume were lower in the experimental diet groups except for the 30% fructose + 20% lard group. The mean voided volume was lower in the 30% fructose + 20% lard and 32.5% lard groups compared with the control group. Cystometric analysis revealed a decreased bladder capacity, mean voided volume, intermicturition interval, and compliance in the 32.5% lard diet group. In conclusion, experimental diets including 60% fructose, 30% fructose + 20% lard, or 2% cholesterol + 10% lard diet differently affected physiological and metabolic parameters and bladder function to a limited extent, while exposure to a 32.5% lard diet had a greater impact.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。