Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling

妊娠期镉暴露通过激活 GC/GR 信号传导损害胎盘血管生成

阅读:5
作者:Xue-Ting Shi, Hua-Long Zhu, Xiao-Feng Xu, Yong-Wei Xiong, Li-Min Dai, Guo-Xiang Zhou, Wei-Bo Liu, Yu-Feng Zhang, De-Xiang Xu, Hua Wang

Abstract

Gestational exposure to environmental Cd caused placental angiogenesis impairment and fetal growth restriction (FGR). However, its mechanism remained unclear. This study was to investigate the effects of Cd exposure during pregnancy on placental angiogenesis and its mechanism. Pregnant mice were exposed to CdCl2 (4.5 mg/kg) on gestational day (GD) 8 with or without melatonin (MT) (5.0 mg/kg), an anti-endoplasmic reticulum stress agent, from GD7 to GD15. Human primary placental trophoblasts and JEG-3 cells were stimulated using CdCl2 (20 μM) after MT (1 mM) preprocessing. We firstly found MT treatment obviously mitigated environmental Cd-induced placental angiogenesis disorder and reduction of the VEGF-A level. Mechanistically, MT reversed environmental Cd-downregulated the protein expression of VEGF-A via inhibiting glucocorticoid receptor (GR) activation. Notably, our data showed MT treatment antagonized Cd-activated GC/GR signaling via blocking PERK signaling and thereby upregulated VEGF-A and 11β-HSD2 protein expression. Based upon the population case-control study, the levels of VEGF-A and 11β-HSD2 protein in small-for-gestational-age placentae were significantly reduced when compared to appropriate-for-gestational-age placentae. Overall, environmental Cd exposure during gestation impaired placental angiogenesis via PERK-regulated GC/GR signaling in placental trophoblasts. Our findings will provide a basis for prevention and treatment of placental impairments and fetal growth restriction caused by environment toxicants in future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。