Cardioprotective effect of icariin against myocardial fibrosis and its molecular mechanism in diabetic cardiomyopathy based on network pharmacology: Role of ICA in DCM

基于网络药理学研究淫羊藿苷抗糖尿病心肌病心肌纤维化的保护作用及其分子机制:ICA在DCM中的作用

阅读:5
作者:Liping Zhang, Shudong Wang, Yuying Li, Yonggang Wang, Chunzhe Dong, Hui Xu

Background

Diabetic cardiomyopathy (DCM) is one of the most severe symptoms of diabetes. It continues to be a major clinical problem, but our knowledge of its molecular mechanisms and effective treatments are limited. Traditional Chinese medicine has been shown to be a pool of novel drugs for diabetes.

Conclusion

In conclusion, these results demonstrate the regulatory roles of potential target genes in DCM and suggest ICA as an effective treatment of DCM by targeting these genes specifically.

Methods

Candidate genes related to T2DM were identified through bioinformatics screening and their interactions were constructed by molecule docking technique, followed by pathway enrichment analyses of their cellular functions. A T2DM rat model was then established to evaluate the effects of ICA on cardiac structures, myocardial fibrosis, and cellular Ca2+ inflow, as reflected by HE and Masson staining, qRT-PCR and Western blot determination of related genes, and measurement of the L-type Ca2+ current.

Purpose

Herein, we aim to define the molecular mechanism of icariin (ICA), an extract from a traditional Chinese medicine herb, in protecting cardiac structures and restoring cardiac functions of in a rat model of type 2 diabetes mellitus (T2DM). Study design and

Results

Four potential target genes (Jun, p65, NOS3, and PDE5A) were identified. ICA ameliorated the structural damage and myocardial fibrosis in T2DM rats. Intracellular Ca2+ hyperactivities and dysfunction in myocardium of T2DM rats were also repressed by ICA treatment. Furthermore, ICA-induced inhibition of Jun and p65 ameliorated the irregular collagen metabolism and myocardial fibrosis. NOS3, PDE5A and the related sGC-cGMP-PKG signaling pathway mediated the ICA-induced improvement of intracellular Ca2+ inflow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。