Collagen density regulates the activity of tumor-infiltrating T cells

胶原密度调节肿瘤浸润 T 细胞的活性

阅读:5
作者:Dorota E Kuczek, Anne Mette H Larsen, Marie-Louise Thorseth, Marco Carretta, Adrija Kalvisa, Majken S Siersbæk, Ana Micaela C Simões, Anne Roslind, Lars H Engelholm, Elfriede Noessner, Marco Donia, Inge Marie Svane, Per Thor Straten, Lars Grøntved, Daniel H Madsen

Background

Tumor progression is accompanied by dramatic remodeling of the surrounding extracellular matrix leading to the formation of a tumor-specific ECM, which is often more collagen-rich and of increased stiffness. The altered ECM of the tumor supports cancer growth and metastasis, but it is unknown if this effect involves modulation of T cell activity. To investigate if a high-density tumor-specific ECM could influence the ability of T cells to kill cancer cells, we here studied how T cells respond to 3D culture in different collagen densities.

Conclusions

Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.

Methods

T cells cultured in 3D conditions surrounded by a high or low collagen density were imaged using confocal fluorescent microscopy. The effects of the different collagen densities on T cell proliferation, survival, and differentiation were examined using flow cytometry. Cancer cell proliferation in similar 3D conditions was also measured. Triple-negative breast cancer specimens were analyzed for the number of infiltrating CD8+ T cells and for the collagen density. Whole-transcriptome analyses were applied to investigate in detail the effects of collagen density on T cells. Computational analyses were used to identify transcription factors involved in the collagen density-induced gene regulation. Observed changes were confirmed by qRT-PCR analysis.

Results

T cell proliferation was significantly reduced in a high-density matrix compared to a low-density matrix and prolonged culture in a high-density matrix led to a higher ratio of CD4+ to CD8+ T cells. The proliferation of cancer cells was unaffected by the surrounding collagen-density. Consistently, we observed a reduction in the number of infiltrating CD8+ T-cells in mammary tumors with high collagen-density indicating that collagen-density has a role in regulating T cell abundance in human breast cancer. Whole-transcriptome analysis of 3D-cultured T cells revealed that a high-density matrix induces downregulation of cytotoxic activity markers and upregulation of regulatory T cell markers. These transcriptional changes were predicted to involve autocrine TGF-β signaling and they were accompanied by an impaired ability of tumor-infiltrating T cells to kill autologous cancer cells. Conclusions: Our study identifies a new immune modulatory mechanism, which could be essential for suppression of T cell activity in the tumor microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。