Efficient and directed peptide bond formation in the gas phase via ion/ion reactions

通过离子/离子反应在气相中高效、定向地形成肽键

阅读:5
作者:William M McGee, Scott A McLuckey

Abstract

Amide linkages are among the most important chemical bonds in living systems, constituting the connections between amino acids in peptides and proteins. We demonstrate the controlled formation of amide bonds between amino acids or peptides in the gas phase using ion/ion reactions in a mass spectrometer. Individual amino acids or peptides can be prepared as reagents by (i) incorporating gas phase-labile protecting groups to silence otherwise reactive functional groups, such as the N terminus; (ii) converting the carboxyl groups to the active ester of N-hydroxysuccinimide; and (iii) incorporating a charge site. Protonation renders basic sites (nucleophiles) unreactive toward the N-hydroxysuccinimide ester reagents, resulting in sites with the greatest gas phase basicities being, in large part, unreactive. The N-terminal amines of most naturally occurring amino acids have lower gas phase basicities than the side chains of the basic amino acids (i.e., those of histidine, lysine, or arginine). Therefore, reagents may be directed to the N terminus of an existing "anchor" peptide to form an amide bond by protonating the anchor peptide's basic residues, while leaving the N-terminal amine unprotonated and therefore reactive. Reaction efficiencies of greater than 30% have been observed. We propose this method as a step toward the controlled synthesis of peptides in the gas phase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。