ANXA3 as a novel biomarker for sepsis diagnosis: Evidence from integrative WGCNA analysis

ANXA3 作为脓毒症诊断的新型生物标志物:来自综合 WGCNA 分析的证据

阅读:4
作者:Jing-Xiang Zhang, Xin-Hao Xing, Ren-Yi Lu, Meng-Xiao Liu, Wei-Heng Xu, Hao-Cheng Zhang, Qing-Jie Zhao, Yan Wang

Abstract

Sepsis is a dysregulated immune response to infection that comes with multiple organ dysfunction and high mortality. The management of sepsis relies heavily on early recognition and diagnosis, but current diagnostic methods have limitations in timeliness, sensitivity, and discriminability. This study aims to discover novel biomarkers for sepsis diagnosis. Four datasets from different regions were analyzed using weighted gene co-expression network analysis (WGCNA), and genes with high Gene Significance values across these datasets were overlapped. Finally, two genes, CD177 and ANXA3, were identified. ANXA3 was validated as a potential sepsis biomarker by checking multiple datasets and Receiver Operating Characteristic (ROC) Curve Analysis. Of note, ANXA3 could distinguish not only between adult and child sepsis patients and healthy controls, but also between septic shock and cardiogenic shock. Moreover, a murine sepsis model was established and the results showed that the transcription of ANXA3 in peripheral blood of septic mice was significantly higher than that of healthy controls, while Escherichia coli infection alone did not significantly increase the transcription level of this gene. Subsequent studies of sepsis in mice revealed that the predictive effect of Anxa3 on sepsis could be observed as early as 6 h post-modeling. Interestingly, ANXA3 expression was predominantly up-regulated in myeloid cells, up-regulated in spleen, down-regulated in lung, and not detected in liver after sepsis modeling. Taken together, this study provides a way for the discovery of biomarkers and finds that ANXA3 may be a novel diagnostic biomarker for sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。