A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells

菊花作为染料敏化太阳能电池颜料的实验与计算综合研究

阅读:6
作者:Atoumane Ndiaye, Alle Dioum, Corneliu I Oprea, Anca Dumbrava, Jeanina Lungu, Adrian Georgescu, Florin Moscalu, Mihai A Gîrţu, Aboubaker Chedikh Beye, Issakha Youm

Abstract

The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin and the extracts with various pH values were tested in DSSCs. The extracts and photosensitized semiconductor layers were characterized by UV-Vis spectroscopy, and DSSCs based on raw extracts were characterized by current density-voltage measurements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。