Cathepsin D in Podocytes Is Important in the Pathogenesis of Proteinuria and CKD

足细胞中的组织蛋白酶 D 在蛋白尿和 CKD 的发病机制中起重要作用

阅读:7
作者:Kanae Yamamoto-Nonaka, Masato Koike, Katsuhiko Asanuma, Miyuki Takagi, Juan Alejandro Oliva Trejo, Takuto Seki, Teruo Hidaka, Koichiro Ichimura, Tatsuo Sakai, Norihiro Tada, Takashi Ueno, Yasuo Uchiyama, Yasuhiko Tomino

Abstract

Studies have revealed many analogies between podocytes and neurons, and these analogies may be key to elucidating the pathogenesis of podocyte injury. Cathepsin D (CD) is a representative aspartic proteinase in lysosomes. Central nervous system neurons in CD-deficient mice exhibit a form of lysosomal storage disease with a phenotype resembling neuronal ceroid lipofuscinoses. In the kidney, the role of CD in podocytes has not been fully explored. Herein, we generated podocyte-specific CD-knockout mice that developed proteinuria at 5 months of age and ESRD by 20-22 months of age. Immunohistochemical analysis of these mice showed apoptotic podocyte death followed by proteinuria and glomerulosclerosis with aging. Using electron microscopy, we identified, in podocytes, granular osmiophilic deposits (GRODs), autophagosome/autolysosome-like bodies, and fingerprint profiles, typical hallmarks of CD-deficient neurons. CD deficiency in podocytes also led to the cessation of autolysosomal degradation and accumulation of proteins indicative of autophagy impairment and the mitochondrial ATP synthase subunit c accumulation in the GRODs, again similar to changes reported in CD-deficient neurons. Furthermore, both podocin and nephrin, two essential components of the slit diaphragm, translocated to Rab7- and lysosome-associated membrane glycoprotein 1-positive amphisomes/autolysosomes that accumulated in podocyte cell bodies in podocyte-specific CD-knockout mice. We hypothesize that defective lysosomal activity resulting in foot process effacement caused this accumulation of podocin and nephrin. Overall, our results suggest that loss of CD in podocytes causes autophagy impairment, triggering the accumulation of toxic subunit c-positive lipofuscins as well as slit diaphragm proteins followed by apoptotic cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。