High Expression Achievement of Active and Robust Anti-β2 microglobulin Nanobodies via E.coli Hosts Selection

通过大肠杆菌宿主选择实现高活性和强效的抗β2微球蛋白纳米抗体的高表达

阅读:7
作者:Da Li, Fangling Ji, Chundong Huang, Lingyun Jia

Abstract

Nanobodies (VHHs) overcome many of the drawbacks of conventional antibodies, and the related technologies represent state-of-the-art and advanced applications in scientific research, pharmaceuticals, and therapies. In terms of productivity and economic cost, the cytoplasmic expression of VHHs in Escherichia coli (E. coli) is a good process for their recombinant production. The cytoplasmic environment of the host is critical to the affinity and stability of the recombinant VHHs in soluble form, yet the effects have not been studied. For this purpose, recombinant anti-β2 microglobulin VHHs were constructed and expressed in four commercialized E. coli hosts, including BL21 (DE3), Rosetta-gami B (DE3) pLysS, Origami 2 (DE3) and SHuffle T7 Express. The results showed that anti-β2 microglobulin (β2MG) VHHs expressed in different hosts exhibited distinctive differences in the affinity and structural characteristics. The VHHs expressed in Rosetta-gami B (DE3) pLysS possessed not only the greatest affinity of (equilibrium dissociation constant) KD = 4.68 × 10-8 M but also the highest yields compared with the VHHs expressed in BL21 (DE3), Origami 2 (DE3) and SHuffle T7 Express. In addition, the VHHs expressed in Rosetta-gami B (DE3) pLysS were more stable than the VHHs expressed in the rest three hosts. Thus far, we have successfully realized the high expression of the active and robust anti-β2MG VHHs in Rosetta-gami B (DE3) pLysS. The underlying principle of our study is able to guide the expression strategies of nanobodies on the context of industrial large-scale production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。