Time course and calcium dependence of transmitter release at a single ribbon synapse

单个带状突触递质释放的时间进程和钙依赖性

阅读:5
作者:Juan D Goutman, Elisabeth Glowatzki

Abstract

At the first synapse in the auditory pathway, the receptor potential of mechanosensory hair cells is converted into a firing pattern in auditory nerve fibers. For the accurate coding of timing and intensity of sound signals, transmitter release at this synapse must occur with the highest precision. To measure directly the transfer characteristics of the hair cell afferent synapse, we implemented simultaneous whole-cell recordings from mammalian inner hair cells (IHCs) and auditory nerve fiber terminals that typically receive input from a single ribbon synapse. During a 1-s IHC depolarization, the synaptic response depressed >90%, representing the main source for adaptation in the auditory nerve. Synaptic depression was slightly affected by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor desensitization; however, it was mostly caused by reduced vesicular release. When the transfer function between transmitter release and Ca(2+) influx was tested at constant open probability for Ca(2+) channels (potentials >0 mV), a super linear relation was found. This relation is presumed to result from the cooperative binding of three to four Ca(2+) ions at the Ca(2+) sensor. However, in the physiological range for receptor potentials (-50 to -30 mV), the relation between Ca(2+) influx and afferent activity was linear, assuring minimal distortion in the coding of sound intensity. Changes in Ca(2+) influx caused an increase in release probability, but not in the average size of multivesicular synaptic events. By varying Ca(2+) buffering in the IHC, we further investigate how Ca(2+) channel and Ca(2+) sensor at this synapse might relate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。