Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells

催产素减弱巨噬细胞和血管细胞中 NADPH 依赖的超氧化物活性和 IL-6 分泌

阅读:5
作者:Angela Szeto, Daniel A Nation, Armando J Mendez, Juan Dominguez-Bendala, Larry G Brooks, Neil Schneiderman, Philip M McCabe

Abstract

Oxytocin is synthesized and released in the heart and vasculature, tissues that also express oxytocin receptors. Although it has been established this intrinsic cardiovascular oxytocin system is important in normal homeostatic cardiac and vascular regulation, a role for this system in cardiovascular pathophysiology has not been investigated. The current study examined the influence of oxytocin on mechanisms in atherogenesis, oxidative stress, and inflammation in cultured human vascular cells, THP-1 monocytes, and macrophages. Oxytocin receptor protein and mRNA expression, NADPH-dependent superoxide activity, and interleukin-6 secretion were measured. Results demonstrated oxytocin receptor protein and mRNA in THP-1 monocytes and macrophages. Incubation of cells at physiological levels of oxytocin significantly decreased basal and stimulated NADPH-dependent superoxide activity in vascular cells, monocytes, and macrophages by 24-48%. Oxytocin also attenuated interleukin-6 secretion from stimulated THP-1 macrophages and endothelial cells by 56 and 26%, respectively. These findings suggest that oxytocin attenuates vascular oxidative stress and inflammation, two important pathophysiological processes in atherosclerosis. The fact that oxytocin receptors are found in monocytes and macrophages, and oxytocin decreases both superoxide production and release of a proinflammatory cytokine from these cells, suggests a potentially larger role for oxytocin in the attenuation of disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。