Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2

二维材料光子和电子响应的反卷积:以 MoS2 为例

阅读:7
作者:Kehao Zhang, Nicholas J Borys, Brian M Bersch, Ganesh R Bhimanapati, Ke Xu, Baoming Wang, Ke Wang, Michael Labella, Teague A Williams, Md Amanul Haque, Edward S Barnard, Susan Fullerton-Shirey, P James Schuck, Joshua A Robinson0

Abstract

Evaluating and tuning the properties of two-dimensional (2D) materials is a major focus of advancing 2D science and technology. While many claim that the photonic properties of a 2D layer provide evidence that the material is "high quality", this may not be true for electronic performance. In this work, we deconvolute the photonic and electronic response of synthetic monolayer molybdenum disulfide. We demonstrate that enhanced photoluminescence can be robustly engineered via the proper choice of substrate, where growth of MoS2 on r-plane sapphire can yield >100x enhancement in PL and carrier lifetime due to increased molybdenum-oxygen bonding compared to that of traditionally grown MoS2 on c-plane sapphire. These dramatic enhancements in optical properties are similar to those of super-acid treated MoS2, and suggest that the electronic properties of the MoS2 are also superior. However, a direct comparison of the charge transport properties indicates that the enhanced PL due to increased Mo-O bonding leads to p-type compensation doping, and is accompanied by a 2x degradation in transport properties compared to MoS2 grown on c-plane sapphire. This work provides a foundation for understanding the link between photonic and electronic performance of 2D semiconducting layers, and demonstrates that they are not always correlated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。